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1. Introduction 

Efforts to leverage the growing computational power available using parallel programming 
inexorably must address the significant factor of heterogeneous computing.1–3 Multicore central 
processing units (CPUs) and various hardware accelerators exacerbate a complex architectural 
landscape that inevitably constrains parallel application design and implementation.4 With the 
underlying hardware changes, code must often be repurposed to remain viable. Achieving high 
performance on heterogeneous systems with complex memory hierarchies proves to be a major 
challenge. Furthermore, as data movement dictates computational cost and power, efficiency on 
future systems will require programming models with program data reasoning.   

The Legion programming system from Stanford University was developed to address the specific 
issues involved with parallel heterogeneous computing from a data-centric viewpoint.5 Legion 
defines a methodology whereby the developer can view parallelism through a grouping of 
specially designated functions called tasks, each of which will operate on some portion of the 
global domain in parallel.6 This parallelism invoked by Legion is often referred to as task-
parallelism and is implicit in the design.5,6 

However, to take advantage of the benefits afforded by Legion for parallel heterogeneous 
computing it is necessary to understand how the programming system works. The intent of this 
study is to examine the syntax and application building potential of the Legion programming 
system via an emblematic computing algorithm. The n-body problem, an important part of many 
physics applications,7–9 was chosen as the vehicle to examine Legion in this regard. An outline of 
the rest of this work follows. 

Section 2 provides the reader with a background into both the n-body simulation utilized by this 
work and the Legion programming system. This section also describes the technical 
specifications of the computing environment used by this study. The details of building the  
n-body simulation using Legion are discussed in Section 3. Section 4 discusses the observed 
results, and the final section provides a conclusion and potential future directions. 

2. Background 

This section will briefly provide a background into the n-body problem as well as some pertinent 
information regarding the Legion programming system. Legion is a fairly flexible system that 
allows developers to create initial programs in a rather facile manner but has the ability to evolve 
into far more complex structures and algorithms. Therefore, the information regarding Legion
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in this work is far from exhaustive, and the interested reader is referred to Bauer et al5,6 and 
Treichler10 for more in-depth examinations of particulars beyond the implementation of the n-
body algorithm used in this work. 

2.1 The N-body Problem 

The n-body problem describes an approach to understand how a set of n-bodies/particles interact 
with one another over time and is based on principles proposed by Sir Isaac Newton.11 The n-
body problem is a critical component to many applications but generally falls under 2 paradigms 
for computational modeling: pair-wise or hierarchical tree-based solutions.12–14 This work 
follows the pair-wise computational model for gravitational simulation with an asymptotic 
computational complexity of ( )2NΟ  where N is the number of bodies/particles in the system15 
as performance is not the intent. As illustrated in Fig. 1, the pair-wise algorithm generates this 
computational cost via the body-to-body interactions calculated in lines 6–17. 

 

Fig. 1   Pair-wise n-body algorithm

 

 
1.  SET gdt TO GRAVITY * TimeStep 
2.  SET EPS TO 0.0001 
3.  FOR T <= 0 TO TotalTime 
4.    FOR I <= 0 TO N 
5.  Particle p0 <= Particles[I] 
6.  FOR J <= I + 1 TO N 
7.   Particle p1 <= Particles[J] 
8.   dx <= p1.x – p0.x 
9.   dy <= p1.y – p0.y 
10.   dz <= p1.z – p0.z 
11.   invr <= 1 / SQRT(dx*dx + dy*dy + dz*dz + EPS) 
12.   invr3 <= invr*invr*invr 
13.   force <= p1.mass*invr3 
14.   ax <= ax + force*dx 
15.   ay <= ay + force*dy 
16.   az <= az + force*dz 
17.  END FOR 
18.  Xnew[I] <= p0.x + gdt*p0.velX + 0.5*gdt*gdt*ax 
19.   Ynew[I] <= p0.y + gdt*p0.velY + 0.5*gdt*gdt*ay 
20.  Znew[I] <= p0.z + gdt*p0.velZ + 0.5*gdt*gdt*az 
21.  p0.velX <= p0.velX + gdt*ax 
22.  p0.velY <= p0.velY + gdt*ay 
23.  p0.velZ <= p0.velZ + gdt*az 
24.   END FOR 
25.   FOR I <= 0 TO N 
26.  Particle p <= Particles[I] 
27.  p.x <= Xnew[I] 
28.  p.y <= Ynew[I] 
29.  p.z <= Znew[I] 
30.   END FOR 
31. END FOR 
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2.2 The Legion Programming Model 

The Legion programming system addresses parallelism in a data-centric fashion, providing a set 
of tasks to execute on defined logical regions in the code.5,6,10 These tasks are structured in a 
hierarchy and will bind associated logical regions to actual physical addresses at runtime to allow 
for optimal system flexibility. A top-level task is defined for every Legion program but beyond 
this the developer is free to define any number of custom operations as long as they are 
registered by the system prior to execution.5,10 

2.3 Registering Legion Tasks 

The top-level task is executed by the Legion programming system first and can be viewed as the 
control point for the system. Figure 2 shows the general hierarchy of Legion task registration 
whereby the top-level task is first followed by any other tasks for the application before the 
invocation of the Legion start function.5,6 

 

Fig. 2   Legion task 
registration 
hierarchy 

The registration of Legion tasks with the runtime engine is accomplished by passing the defined 
task to the template of the register-Legion-task object along with a unique integer identifier.5,6 
This allows the Legion runtime to associate the defined task with the globally unique 
identification value.6 Once the defined tasks are properly registered with the Legion runtime, the 
system must start execution. 

The Legion start function will automatically call all underlying communication libraries such as 
the Message Passing Interface (MPI) to properly initialize the system.5,6,10 The start function will 
look for all defined and registered Legion tasks and execute them in the predefined hierarchy 
(see Fig. 2). Upon completion, Legion will automatically call underlying communication 
libraries clean-up/shut-down operations returning the resulting flag (e.g., success or failure).6
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2.4 Launching Legion Tasks 

The defined and registered Legion tasks, with the exception of the top-level task, must be 
explicitly invoked via the TaskLauncher object.5 TaskLauncher objects can be passed either 
single or multiple arguments with the TaskArgument or ArgumentMap objects, respectively.6 
However, to ensure optimal flexibility and performance, Legion follows the delayed execution 
model and does not bind arguments until the TaskLauncher object is passed to the actual 
execution point in the program.5,10 

2.5 Domain of Execution 

The domain of execution for a Legion program is defined as the Domain object such that 
structured and unstructured versions are available.5,6,10 The unstructured domain is a grouping of 
points in the logical region that the developer must explicitly call and initialize, whereas the 
structured domain is represented by a rectangular object that is implicitly initialized.6 These 
domain definitions are validated prior to execution and represent logical regions that each task 
can access and manipulate as per the dictates of the task privileges and coherence settings.5,6,10 

The logical regions in Legion are broken down into sets of index spaces and field spaces.5 The 
index space can be views as a row in row-column descriptions and the field space as columns 
such that the field space is an applied description of entries in the current region.6 These regions 
can be shared by other regions or can maintain exclusivity as shown in Fig. 3. 

 

 

Fig. 3   Legion region descriptions
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2.6 Legion Is Object-Oriented 

Legion supports covariant and contra-covariant bindings, meaning that the order of sub-types 
(e.g., polymorphism) is preserved or could be reversed, respectively. The ability to function in 
this manner ensures that Legion will execute in an object-oriented manner that any C++ 
programmer should be familiar with. These arguments are passed in and out of Legion tasks in a 
pass-by-value manner. 

Legion permits a given task to have declared side effects on declared regions of data, resulting in 
the ability of logical regions to act as heaps with tasks themselves changing state. The design of 
Legion allows task to manifest as imperative or functional provided maximum flexibility within 
the context of a C/C++ program. However, this design means that Legion views function 
pointers as analogous to global variables and therefore the passing function pointers around to 
tasks is strongly discouraged. 

2.7 Computing Environment Employed 

The computing environment used for this work is a 64-node heterogeneous cluster consisting of 
48 IBM dx360M4 nodes, each with one Intel Phi 5110P and 16 dx360M4 nodes each with one 
NVIDIA Kepler K20M graphics processing unit. Each node contained dual Intel Xeon E5-2670 
(Sandy Bridge) CPUs, 64 GB of memory and a Mellanox FDR-10 Infiniband host channel 
adaptor.16,17 

However, this work does not employ accelerators, concentrating instead on the behavior of a 
single compute node, e.g., Intel Xeon E5-2670 limited to a single processing core. The 
application of the Legion programming model and runtime library to a single CPU job slot 
isolates the shared memory behavior, which could then be extended to the distributed parallel 
environment at a later date. 

Workload management for the computing environment was implemented using IBM Platform 
LSF 9.1, which is specifically designed for mission-critical high-performance computing 
environments.18 The operation was limited to a single, nonaccelerator, job slot by setting the 
batch submit switch n to 1 and not explicitly calling any Intel Many Integrated Core Architecture 
devices.18 The BLAUNCH command was employed to allow parallel operation within the shared 
memory paradigm for this work.18 

The next section discusses the implementation of the gravitational n-body simulation using the 
Legion programming system.
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3. Building the Application 

The first step in building the n-body simulation employed by this study is to properly install the 
Legion programming system itself as described by Harada.2 Legion can be deployed as either a 
shared or distributed memory system; the latter requires using the GASNet library for defined 
communication calls, and the reader is referred to Harada2 for further details. After downloading 
and setting the Legion runtime environment variable(s), as per Harada,2 the next step is to decide 
how to partition the domain as a set of Legion tasks. 

3.1 Defining Tasks 

Legion operates the set of tasks as a hierarchy with the top-level task the designated control 
point5; the n-body simulation actualized for this study is no exception. The top-level task for this 
work employs an unstructured set of bodies/particles and must therefore be explicitly initialized 
before validation. This top-level task will instantiate a logical region that will then be loaded 
with data from an external file as a structure of particles using a defined inline TaskLauncher 
object (see Fig. 4). Once complete, the physical region is unmapped so that control may then 
pass to the next task in the hierarchy, i.e., the main task. 

 

Fig. 4   Top-level task 

The main task defined for this work controls the outer loop of the n-body algorithm shown as 
line 3 in Fig. 1. Essentially the only operation this task performs is to call the last task in the 
application hierarchy, i.e., the force-update task (see Fig. 5). The main task must unmap and then 
remap the current physical region when calling the force-update task as this will allow Legion to 
properly schedule execution independent of the enclosing task.

 

 
1.  SET Particles p TO NULL        // array of particle structs 
2.  CALL load_file_data (file)     // function loads external file 
3.  CREATE Logical Region lr       // bind logical region 
4.  SET ptr_t next TO 0            // base of particles 
5. CREATE TaskLauncher (WRITE)    // task launcher 
6.  FOR I <= 0 TO N 
7.   SET ptr TO next->value++  // next object in particle set 
8.   WRITE ptr (p [I]) 
9.  END FOR 
10.  UNMAP REGION 
11.  CALL main-task 
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Fig. 5   Main task 

The force-update task for this work is derived directly from lines 6–17 and 18–23 of Fig. 1 and, 
as such, is exactly the same algorithm. Therefore, for the sake of brevity, it is not repeated at this 
point. 

3.2 Final Algorithm 

Once the task partitioning strategy has been designed, the final program is ready to deploy and 
can be seen in Fig. 6. 

 

Fig. 6   Final application design 

4. Observed Results 

The objective of this work is a better understanding of the practical uses of the Legion 
programming system with regards to an example computing application rather than performance. 
As such, it is critical that the validity of the program itself be established. This section discusses 
the actual observed results of the gravitational n-body application gathered using Legion against 
those from a standard C++ implementation. Both of these programs are executed against the 
same input files and computing environments.

 

Listing 3.  
 
1.  FOR T <= 0 TO TOTAL TIME 
2.   UNMAP REGION 
3.   CREATE TaskLauncher (force-update, READ-WRITE) 
4.   CALL force-update // sub-task 
5.   REMAP REGION 
6.  END FOR 

 

 
1.  CALL top-level-task 
2.  LOAD input data 
3.         WRITE particle data to PHYSICAL_REGION 
4.  CALL main-task 
5.         FOR EACH Time Step 
6.   CALL force-update-task 
7.  END FOR 
8. DONE 
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The data in the Table shows the coordinate position of the C++ version of the gravitational n-
body program used in this study with that of the corresponding Legion application. These 
coordinates are for an 8-body system and clearly show the correctness of the program.  

Table   N-body validity for 8 bodies 

Particle X Y Z X-legion Y-legion Z-legion 
0 1.66 9.37 6.211 1.66 9.37 6.211 
1 9.19 3.94 7.59 9.19 3.94 7.59 
2 9.36 0.46 0.37 9.36 0.46 0.37 
3 6.70 8.34 5.66 6.70 8.34 5.66 
4 5.26 9.94 9.12 5.26 9.94 9.12 
5 10.00 0.00 10.00 10.00 0.00 10.00 
6 8.60 8.39 8.77 8.60 8.39 8.77 
7 0.00 10.00 0.00 0.00 10.00 0.00 

 

5. Conclusions and Future Work 

This work has presented the Legion programming paradigm within the context of an important 
computational algorithm employed in many of today’s high performance computing research, the 
n-body simulation. The gravitational n-body algorithm was defined using the Legion 
programming paradigm to illustrate the potential for future research in computing and has been 
shown to be both practical and correct for this purpose. The Legion programming system is 
flexible and introduces the developer to task-oriented programming, free from underlying 
computing architectures and communication procedures. 

Future directions for this programming model are numerous and include a more effective and 
portable design for parallel heterogeneous computing. In particular the extension of this work to 
include the Fast Multipole Method (FMM) of the n-body problem is an interesting direction. 
FMM is currently being planned in concert with Stanford University as a part of a larger strategy 
of task-oriented solutions to heterogeneous parallel computing.
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